Direct numerical simulation of passive scalar transport in transverse jets

نویسندگان

  • SUMAN MUPPIDI
  • KRISHNAN MAHESH
چکیده

Direct numerical simulation is used to study passive scalar transport and mixing in a round turbulent jet, in a laminar crossflow. The ratio of the jet velocity to that of the crossflow is 5.7, the Schmidt number of the scalar is 1.49, and the jet-exit Reynolds number is 5000. The scalar field is used to compute entrainment of the crossflow fluid by the jet. It is shown that the bulk of this entrainment occurs on the downstream side of the jet. Also, the transverse jet entrains more fluid than a regular jet even when the jet has not yet bent into the crossflow. The transverse jet’s enhanced entrainment is explained in terms of the pressure field around the jet. The acceleration imposed by the crossflow deforms the jet cross-section on the downstream side, which sets up a pressure gradient that drives downstream crossflow fluid toward the jet. The simulation results are used to comment on the applicability of the gradient–diffusion hypothesis to compute passive scalar mixing in this flow field. Computed values of the eddy diffusivity show significant scatter, and a pronounced anisotropy. The near field also exhibits counter gradient diffusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Interaction of Two Plane Parallel Jets

In the present work, a numerical simulation of two parallel turbulent jets was performed. The simulations were carried out by using the  standard, the  standard and the RSM models. A parametric study was also presented to determine the effect of the nozzles spacing and velocity ratio on the axial and transverse positions of the merge and combined points. Correlations between the various paramet...

متن کامل

A vortex-based model for the subgrid flux of a passive scalar

A model for the ux of a passive scalar by the subgrid motions in the largeeddy simulation of turbulent ow is proposed within the framework of the stretched-vortex subgrid stress model. The model is based on an analytical solution for the winding of a scalar eld by an elemental subgrid vortex. This gives a tensor gradient-di usion expression for the local ux of the scalar with subgrid turbulent ...

متن کامل

Transport of Passive Scalars in Turbulent Channel Flow

A direct numerical simulation of a turbulent channel flow with three passive scalars at different molecular Prandtl numbers is performed. Computed statistics including the turbulent Prandtl numbers are compared with existing experimental data. The computed fields are also examined to investigate the spatial structure of the scalar fields. The scalar fields are highly correlated with the streamw...

متن کامل

Numerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater

Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard  turbulence closure model. This study aims to explore the ability of a time splitting method ...

متن کامل

Direct numerical simulation of passive scalar in decaying compressible turbulence

The passive scalars in the decaying compressible turbulence with the initial Reynolds number (defined by Taylor scale and RMS velocity) Re=72, the initial turbulent Mach numbers (defined by RMS velocity and mean sound speed) Mt=0.2-0.9, and the Schmidt numbers of passive scalar Sc=2-10 are numerically simulated by using a 7 order upwind difference scheme and 8 order group velocity control schem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007